Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Signal ; 109: 110746, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37286119

RESUMO

Lung cancer has high morbidity and mortality. This study demonstrated that Bufalin inhibits the proliferation of lung cancer cells in vivo / in vitro by suppressing Hippo-YAP pathway. Here, we found that Bufalin promoted the binding of LATS and YAP to elevate the level of YAP phosphorylation. Phosphorylated YAP could not successfully enter the nucleus to activate the expression of downstream proliferation-related target genes Cyr61 and CTGF, whereas the YAP retained in the cytoplasm further bound to ß-TrCP and underwent ubiquitination and degradation. This study verified the key role of YAP in stimulating the proliferation of lung cancer and revealed the anticancer target of Bufalin. Therefore, this study provides a theoretical basis for the anticancer effect of Bufalin, and suggests that Bufalin can be a potential anticancer drug.


Assuntos
Neoplasias Pulmonares , Proteínas Serina-Treonina Quinases , Humanos , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Fatores de Transcrição/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Proliferação de Células/genética
2.
Antioxid Redox Signal ; 39(7-9): 491-511, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37166352

RESUMO

Aims: Lipid peroxidation occurring in lung adenocarcinoma (LUAD) cells leads to ferroptosis. Lysophosphatidylcholine acyl-transferase 3 (LPCAT3) plays a key role in providing raw materials for lipid peroxidation by promoting esterification of polyunsaturated fatty acids to phospholipids. Whether LPCAT3 determines ferroptosis sensitivity and the mechanism by which its expression is regulated in LUAD has not been reported. Results: LPCAT3 and acyl-coenzyme A (CoA) synthetase long-chain family member (ACSL)4 levels were positively associated with ferroptosis sensitivity in LUAD cell lines. Overexpression of LPCAT3 and ACSL4 sensitized LUAD cells to ferroptosis, while LPCAT3 and ACSL4 knockout showed the opposite effect. Zinc-finger E-box-binding (ZEB) was shown to directly bind the LPCAT3 promoter to stimulate its transcription in a Yes-associated protein (YAP)-dependent manner. An interaction between YAP and ZEB was also observed. E1A-binding protein p300 (EP300) simultaneously bound with YAP and ZEB, and induced H3K27Ac for LPCAT3 transcription. This mechanism was verified in primary LUAD cell and xenograft models. The ACSL4, LPCAT3, and YAP combination can jointly determine LUAD ferroptosis sensitivity. Innovation: The binding site of ZEB exists in the -1600 to -1401 nt region of LPCAT3 promoter, which promotes LPCAT3 transcription after ZEB binding. ZEB and YAP bind, and the ZEB zinc-finger cluster domain and YAP WW domain are crucial for their binding. EP300 may bind with YAP via its Bromo domain and with ZEB via its CBP/p300-HAT domain. In addition, the combination of ACSL4, LPCAT3, and YAP to determine ferroptosis sensitivity of LUAD cells is better than prostaglandin-endoperoxide synthase 2 (PTGS2), transferrin receptor (TFRC), or NADPH oxidase 1 (NOX1). Conclusion: LPCAT3 transcription is regulated by YAP, ZEB, and EP300. LUAD ferroptosis sensitivity can be determined by the combination of ACSL4, LPCAT3, and YAP. Antioxid. Redox Signal. 39, 491-511.


Assuntos
Adenocarcinoma de Pulmão , Ferroptose , Neoplasias Pulmonares , Humanos , Ferroptose/genética , Sítios de Ligação , Coenzima A Ligases/genética , Ciclo-Oxigenase 2 , Neoplasias Pulmonares/genética , Zinco , Proteína p300 Associada a E1A , 1-Acilglicerofosfocolina O-Aciltransferase
3.
J Nanobiotechnology ; 21(1): 104, 2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-36964516

RESUMO

Non-small cell lung cancer (NSCLC) is the most common pathological type of LC and ranks as the leading cause of cancer deaths. Circulating exosomes have emerged as a valuable biomarker for the diagnosis of NSCLC, while the performance of current electrochemical assays for exosome detection is constrained by unsatisfactory sensitivity and specificity. Here we integrated a ratiometric biosensor with an OR logic gate to form an assay for surface protein profiling of exosomes from clinical serum samples. By using the specific aptamers for recognition of clinically validated biomarkers (EpCAM and CEA), the assay enabled ultrasensitive detection of trace levels of NSCLC-derived exosomes in complex serum samples (15.1 particles µL-1 within a linear range of 102-108 particles µL-1). The assay outperformed the analysis of six serum biomarkers for the accurate diagnosis, staging, and prognosis of NSCLC, displaying a diagnostic sensitivity of 93.3% even at an early stage (Stage I). The assay provides an advanced tool for exosome quantification and facilitates exosome-based liquid biopsies for cancer management in clinics.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Eletroquímica , Exoma , Carcinoma Pulmonar de Células não Pequenas/sangue , Carcinoma Pulmonar de Células não Pequenas/diagnóstico , Técnicas Biossensoriais , Limite de Detecção , Análise Química do Sangue/métodos , Análise Química do Sangue/normas , Humanos , Linhagem Celular Tumoral
4.
Cancer Gene Ther ; 30(1): 149-162, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36123390

RESUMO

YAP is a transcriptional co-activator with critical roles in tumorigenesis. However, its upstream regulatory mechanism, especially how its mRNA stability is regulated, remains to be further studied. Here, we validated that YAP expression was higher in lung adenocarcinoma (LUAD) tissues compared to adjacent normal tissues, and found that YAP m5C modification occurred in its 328-331 3' UTR region under the promotion NSUN2 and ALYREF, and increased the stability of YAP mRNA. This m5C modification also inhibited miR-582-3p binding and m6A modification in the nearby region. In addition, YAP m5C modification enhanced the exosome secretion effect, which was caused by two YAP-dependent transcription factors, Mycn and SOX10, and then stimulating the transcription of seven downstream exosome-promoting genes. Furthermore, we found that YAP m5C modification and its exosome-secretion-promoting function contributed to the malignant phenotype and AZD9291 (a third-generation EGFR-TKI) resistance of LUAD cells. Collectively, YAP is promoted by its m5C modification, and blocking YAP m5C modification will be helpful for future LUAD treatment.


Assuntos
Adenocarcinoma de Pulmão , Exossomos , Neoplasias Pulmonares , MicroRNAs , Humanos , 5-Metilcitosina/metabolismo , Exossomos/metabolismo , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Neoplasias Pulmonares/patologia , Estabilidade de RNA , MicroRNAs/genética
5.
Mol Ther ; 31(6): 1615-1635, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-36566349

RESUMO

N6-Methyladenosine (m6A) RNA modification, methylation at the N6 position of adenosine, plays critical roles in tumorigenesis. m6A readers recognize m6A modifications and thus act as key executors for the biological consequences of RNA methylation. However, knowledge about the regulatory mechanism(s) of m6A readers is extremely limited. In this study, RN7SK was identified as a small nuclear RNA that interacts with m6A readers. m6A readers recognized and facilitated secondary structure formation of m6A-modified RN7SK, which in turn prevented m6A reader mRNA degradation from exonucleases. Thus, a positive feedback circuit between RN7SK and m6A readers is established in tumor cells. From findings on the interaction with RN7SK, new m6A readers, such as EWS RNA binding protein 1 (EWSR1) and KH RNA binding domain containing, signal transduction-associated 1 (KHDRBS1), were identified and shown to boost Wnt/ß-catenin signaling and tumorigenesis by suppressing translation of Cullin1 (CUL1). Moreover, several Food and Drug Administration-approved small molecules were demonstrated to reduce RN7SK expression and inhibit tumorigenesis. Together, these findings reveal a common regulatory mechanism of m6A readers and indicate that targeting RN7SK has strong potential for tumor treatment.


Assuntos
Carcinogênese , RNA Nuclear Pequeno , Humanos , RNA Nuclear Pequeno/metabolismo , Retroalimentação , Carcinogênese/genética , Metilação , Transformação Celular Neoplásica , Via de Sinalização Wnt , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo
6.
Mater Today Bio ; 17: 100503, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36457846

RESUMO

A lack of promising targets leads to poor prognosis in patients with lung adenocarcinoma (LUAD). Therefore, it is urgent to identify novel therapeutic targets. The importance of the N6-methyladenosine (m6A) RNA modification has been demonstrated in various types of tumors; however, knowledge of m6A-related proteins in LUAD is still limited. Here, we found that insulin-like growth factor 2 mRNA binding protein 3 (IGF2BP3), an m6A reader protein, is highly expressed in LUAD and associated with poor prognosis. IGF2BP3 desensitizes ferroptosis (a new form of regulated cell death) in a manner dependent on its m6A reading domain and binding capacity to m6A-methylated mRNAs encoding anti-ferroptotic factors, including but not limited to glutathione peroxidase 4 (GPX4), solute carrier family 3 member 2 (SLC3A2), acyl-CoA synthetase long chain family member 3 (ACSL3), and ferritin heavy chain 1 (FTH1). After IGF2BP3 overexpression, expression levels and mRNA stabilities of these anti-ferroptotic factors were successfully sustained. Notably, significant correlations between SLC3A2, ACSL3, and IGF2BP3 were revealed in clinical LUAD specimens, further establishing the essential role of IGF2BP3 in desensitizing ferroptosis. Inducing ferroptosis has been gradually accepted as an alternative strategy to treat tumors. Thus, IGF2BP3 could be a potential target for the future development of new biomaterial-associated therapeutic anti-tumor drugs.

7.
J Cell Mol Med ; 26(19): 5078-5094, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36071546

RESUMO

Abnormal nuclear structure caused by dysregulation of skeletal proteins is a common phenomenon in tumour cells. However, how skeletal proteins promote tumorigenesis remains uncovered. Here, we revealed the mechanism by which skeletal protein Emerin (EMD) promoted glucose metabolism to induce lung adenocarcinoma (LUAD). Firstly, we identified that EMD was highly expressed and promoted the malignant phenotypes in LUAD. The high expression of EMD might be due to its low level of ubiquitination. Additionally, the ISGylation at lysine 37 of EMD inhibited lysine 36 ubiquitination and upregulated EMD stability. We further explored that EMD could inhibit aerobic oxidation and stimulate glycolysis. Mechanistically, via its ß-catenin interaction domain, EMD bound with PDHA, stimulated serine 293 and 300 phosphorylation and inhibited PDHA expression, facilitated glycolysis of glucose that should enter the aerobic oxidation pathway, and EMD ISGylation was essential for EMD-PDHA interaction. In clinical LUAD specimens, EMD was negatively associated with PDHA, while positively associated with EMD ISGylation, tumour stage and diameter. In LUAD with higher glucose level, EMD expression and ISGylation were higher. Collectively, EMD was a stimulator for LUAD by inhibiting aerobic oxidation via interacting with PDHA. Restricting cancer-promoting role of EMD might be helpful for LUAD treatment.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Adenocarcinoma de Pulmão/genética , Glucose , Humanos , Neoplasias Pulmonares/patologia , Lisina , Proteínas de Membrana , Proteínas Nucleares , Piruvato Desidrogenase (Lipoamida) , Serina , beta Catenina
8.
Small ; 18(22): e2200784, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35332677

RESUMO

Circulating microRNAs (miRNAs) can be used as noninvasive biomarkers and are also found circulating in body fluids such as blood. Dysregulated miRNA expression is associated with many diseases, including non-small cell lung cancer (NSCLC), and the miRNA assay is helpful in cancer diagnosis, prognosis, and monitoring. In this work, a versatile electrochemical biosensing system is developed for miRNA detection by DNAzyme-cleavage cycling amplification and hybridization chain reaction (HCR) amplification. With cleavage by Mn2+ targeted DNAzyme, DNA-walker can move along the predesigned DNA tracks and contribute to the transduction and enhancement of signals. For the electrochemical process, the formation of multiple G-quadruplex-incorporated long double-stranded DNA (dsDNA/G-quadruplex) structures is triggered through HCR amplification. The introduction of G-quadruplex allows sensitive measurement of miRNA down to 5.68 fM with good specificity. Furthermore, by profiling miRNA in the NSCLC cohort, this designed strategy shows high efficiency (area under the curve (AUC) of 0.879 using receiver operating characteristic (ROC) analysis) with the sensitivity of 80.0% for NSCLC early diagnosis (stage I). For the discrimination of NSCLC and benign disease, the assay displays an AUC of 0.907, superior to six clinically-acceptable protein tumor markers. Therefore, this platform holds promise in clinical application toward NSCLC diagnosis and prognosis.


Assuntos
Técnicas Biossensoriais , Carcinoma Pulmonar de Células não Pequenas , MicroRNA Circulante , DNA Catalítico , Neoplasias Pulmonares , MicroRNAs , Carcinoma Pulmonar de Células não Pequenas/diagnóstico , DNA/química , DNA Catalítico/metabolismo , Técnicas Eletroquímicas , Humanos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , MicroRNAs/genética
9.
Cancer Commun (Lond) ; 42(4): 287-313, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35184419

RESUMO

BACKGROUND: Resistance to ferroptosis, a regulated cell death caused by iron-dependent excessive accumulation of lipid peroxides, has recently been linked to lung adenocarcinoma (LUAD). Intracellular antioxidant systems are required for protection against ferroptosis. The purpose of the present study was to investigate whether and how extracellular system desensitizes LUAD cells to ferroptosis. METHODS: Established human lung fibroblasts MRC-5, WI38, and human LUAD H1650, PC9, H1975, H358, A549, and H1299 cell lines, tumor and matched normal adjacent tissues of LUAD, and plasma from healthy individuals and LUAD patients were used in this study. Immunohistochemistry and immunoblotting were used to analyze protein expression, and quantitative reverse transcription-PCR was used to analyze mRNA expression. Cell viability, cell death, and the lipid reactive oxygen species generation were measured to evaluate the responses to ferroptosis. Exosomes were observed using transmission electron microscope. The localization of arachidonic acid (AA) was detected using click chemistry labeling followed by confocal microscopy. Interactions between RNAs and proteins were detected using RNA pull-down, RNA immunoprecipitation and photoactivatable ribonucleoside-enhanced crosslinking and immunoprecipitation methods. Proteomic analysis was used to investigate RNA-regulated proteins, and metabolomic analysis was performed to analyze metabolites. Cell-derived xenograft, patient-derived xenograft, cell-implanted intrapulmonary LUAD mouse models and plasma/tissue specimens from LUAD patients were used to validate the molecular mechanism. RESULTS: Plasma exosome from LUAD patients specifically reduced lipid peroxidation and desensitized LUAD cells to ferroptosis. A potential explanation is that exosomal circRNA_101093 (cir93) maintained an elevation in intracellular cir93 in LUAD to modulate AA, a poly-unsaturated fatty acid critical for ferroptosis-associated increased peroxidation in the plasma membrane. Mechanistically, cir93 interacted with and increased fatty acid-binding protein 3 (FABP3), which transported AA and facilitated its reaction with taurine. Thus, global AA was reduced, whereas N-arachidonoyl taurine (NAT, the product of AA and taurine) was induced. Notably, the role of NAT in suppressing AA incorporation into the plasma membrane was also revealed. In pre-clinical in vivo models, reducing exosome improved ferroptosis-based treatment. CONCLUSION: Exosome and cir93 are essential for desensitizing LUAD cells to ferroptosis, and blocking exosome may be helpful for future LUAD treatment.


Assuntos
Adenocarcinoma de Pulmão , Exossomos , Ferroptose , Neoplasias Pulmonares , Adenocarcinoma de Pulmão/genética , Animais , Exossomos/genética , Exossomos/metabolismo , Exossomos/patologia , Humanos , Neoplasias Pulmonares/patologia , Camundongos , Proteômica , RNA Circular/genética , Taurina
10.
Cell Death Discov ; 8(1): 59, 2022 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-35149670

RESUMO

Yes-associated protein (YAP) activation is crucial for tumor formation and development, and its stability is regulated by ubiquitination. ISGylation is a type of ubiquitination like post-translational modification, whereas whether YAP is ISGylated and how ISGylation influences YAP ubiquitination-related function remains uncovered. In addition, YAP can activate glucose metabolism by activating the hexosamine biosynthesis pathway (HBP) and glycolysis, and generate a large number of intermediates to promote tumor proliferation. However, whether YAP stimulates the pentose phosphate pathway (PPP), another tumor-promoting glucose metabolism pathway, and the relationship between this stimulation and ISGylation needs further investigation. Here, we found that YAP was ISGylated and this ISGylation inhibited YAP ubiquitination, proteasome degradation, interaction with-beta-transducin repeat containing E3 ubiquitin-protein ligase (ßTrCP) to promote YAP stability. However, ISGylation-induced pro-YAP effects were abolished by YAP K497R (K, lysine; R, arginine) mutation, suggesting K497 could be the major YAP ISGylation site. In addition, YAP ISGylation promoted cell viability, cell-derived xenograft (CDX) and patient-derived xenograft (PDX) tumor formation. YAP ISGylation also increased downstream genes transcription, including one of the key enzymes of PPP, 6-phosphogluconolactonase (6PGL). Mechanistically, YAP promoted 6PGL transcription by simultaneously recruiting SMAD family member 2 (SMAD2) and TEA domain transcription factor 4 (TEAD4) binding to the 6PGL promoter to activate PPP. In clinical lung adenocarcinoma (LUAD) specimens, we found that YAP ISGylation degree was positively associated with 6PGL mRNA level, especially in high glucose LUAD tissues compared to low glucose LUAD tissues. Collectively, this study suggested that YAP ISGylation is critical for maintaining its stability and further activation of PPP. Targeting ISGylated YAP might be a new choice for hyperglycemia cancer treatment.

11.
J Exp Clin Cancer Res ; 41(1): 36, 2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35078505

RESUMO

BACKGROUND: Lung adenocarcinoma (LUAD)  is the most common subtype of lung cancer. Patient prognosis is poor, and the existing therapeutic strategies for LUAD are far from satisfactory. Recently, targeting N6-methyladenosine (m6A) modification of RNA has been suggested as a potential strategy to impede tumor progression. However, the roles of m6A modification in LUAD tumorigenesis is unknown. METHODS: Global m6A levels and expressions of m6A writers, erasers and readers were evaluated by RNA methylation assay, dot blot, immunoblotting, immunohistochemistry and ELISA in human LUAD, mouse models and cell lines. Cell viability, 3D-spheroid generation, in vivo LUAD formation, experiments in cell- and patient-derived xenograft mice and survival analysis were conducted to explore the impact of m6A on LUAD. The RNA-protein interactions, translation, putative m6A sites and glycolysis were explored in the investigation of the mechanism underlying how m6A stimulates tumorigenesis. RESULTS: The elevation of global m6A level in most human LUAD specimens resulted from the combined upregulation of m6A writer methyltransferase 3 (METTL3) and downregulation of eraser alkB homolog 5 (ALKBH5). Elevated global m6A level was associated with a poor overall survival in LUAD patients. Reducing m6A levels by knocking out METTL3 and overexpressing ALKBH5 suppressed 3D-spheroid generation in LUAD cells and intra-pulmonary tumor formation in mice. Mechanistically, m6A-dependent stimulation of glycolysis and tumorigenesis occurred via enolase 1 (ENO1). ENO1 mRNA was m6A methylated at 359 A, which facilitated it's binding with the m6A reader YTH N6-methyladenosine RNA binding protein 1 (YTHDF1) and resulted in enhanced translation of ENO1. ENO1 positively correlated with METTL3 and global m6A levels, and negatively correlated with ALKBH5 in human LUAD. In addition, m6A-dependent elevation of ENO1 was associated with LUAD progression. In preclinical models, tumors with a higher global m6A level showed a more sensitive response to the inhibition of pan-methylation, glycolysis and ENO activity in LUAD. CONCLUSIONS: The m6A-dependent stimulation of glycolysis and tumorigenesis in LUAD is at least partially orchestrated by the upregulation of METTL3, downregulation of ALKBH5, and stimulation of YTHDF1-mediated ENO1 translation. Blocking this mechanism may represent a potential treatment strategy for m6A-dependent LUAD.


Assuntos
Adenocarcinoma de Pulmão/genética , Glicólise/genética , Neoplasias Pulmonares/genética , Fosfopiruvato Hidratase/metabolismo , Proteômica/métodos , RNA Mensageiro/genética , Adenocarcinoma de Pulmão/patologia , Animais , Carcinogênese , Modelos Animais de Doenças , Humanos , Neoplasias Pulmonares/patologia , Camundongos , Prognóstico , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Front Cell Dev Biol ; 9: 719187, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34765600

RESUMO

Ferroptosis is an iron- and lipid peroxidation-dependent form of regulated cell death. The release of labile iron is one of the important factors affecting sensitivity to ferroptosis. Yes-associated protein (YAP) controls intracellular iron levels by affecting the transcription of ferritin heavy chain (FTH) and transferrin receptor (TFRC). However, whether YAP regulates iron metabolism through other target genes remains unknown. Here, we observed that the system Xc- inhibitor erastin inhibited the binding of the WW domain and PSY motif between YAP and transcription factor CP2 (TFCP2), and then suppressed the transcription of ferritin light chain (FTL) simultaneously mediated by YAP, TFCP2 and forkhead box A1 (FOXA1). Furthermore, inhibition of FTL expression abrogated ferroptosis-resistance in cells with sustained YAP expression. Unlike FTH, which exhibited first an increase and then a decrease in transcription, FTL transcription continued to decline after the addition of erastin, and a decrease in lysine acetyltransferase 5 (KAT5)-dependent acetylation of FTL was also observed. In lung adenocarcinoma (LUAD) tissues, lipid peroxidation and labile iron decreased, while YAP, TFCP2 and FTL increased compared to their adjacent normal tissues, and the lipid peroxidation marker 4-hydroxynonenal (4-HNE) was negatively correlated with the level of FTL or the degree of LUAD malignancy, but LUAD tissues with lower levels of 4-HNE showed a higher sensitivity to ferroptosis. In conclusion, the findings from this study indicated that the suppression of FTL transcription through the inhibition of the YAP-TFCP2-KAT5 complex could be another mechanism for elevating ferroptosis sensitivity and inducing cell death, and ferroptotic therapy is more likely to achieve better results in LUAD patients with a lower degree of lipid peroxidation.

13.
Theranostics ; 11(12): 5650-5674, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33897873

RESUMO

Rationale: Ferroptosis, a newly identified form of regulated cell death, can be induced following the inhibition of cystine-glutamate antiporter system XC- because of the impaired uptake of cystine. However, the outcome following the accumulation of endogenous glutamate in lung adenocarcinoma (LUAD) has not yet been determined. Yes-associated protein (YAP) is sustained by the hexosamine biosynthesis pathway (HBP)-dependent O-linked beta-N-acetylglucosaminylation (O-GlcNAcylation), and glutamine-fructose-6-phosphate transaminase (GFPT1), the rate-limiting enzyme of the HBP, can be phosphorylated and inhibited by adenylyl cyclase (ADCY)-mediated activation of protein kinase A (PKA). However, whether accumulated endogenous glutamate determines ferroptosis sensitivity by influencing the ADCY/PKA/HBP/YAP axis in LUAD cells is not understood. Methods: Cell viability, cell death and the generation of lipid reactive oxygen species (ROS) and malondialdehyde (MDA) were measured to evaluate the responses to the induction of ferroptosis following the inhibition of system XC-. Tandem mass tags (TMTs) were employed to explore potential factors critical for the ferroptosis sensitivity of LUAD cells. Immunoblotting (IB) and quantitative RT-PCR (qPCR) were used to analyze protein and mRNA expression. Co-immunoprecipitation (co-IP) assays were performed to identify protein-protein interactions and posttranslational modifications. Metabolite levels were measured using the appropriate kits. Transcriptional regulation was evaluated using a luciferase reporter assay, chromatin immunoprecipitation (ChIP), and electrophoretic mobility shift assay (EMSA). Drug administration and limiting dilution cell transplantation were performed with cell-derived xenograft (CDX) and patient-derived xenograft (PDX) mouse models. The associations among clinical outcome, drug efficacy and ADCY10 expression were determined based on data from patients who underwent curative surgery and evaluated with patient-derived primary LUAD cells and tissues. Results: The accumulation of endogenous glutamate following system XC- inhibition has been shown to determine ferroptosis sensitivity by suppressing YAP in LUAD cells. YAP O-GlcNAcylation and expression cannot be sustained in LUAD cells upon impairment of GFPT1. Thus, Hippo pathway-like phosphorylation and ubiquitination of YAP are enhanced. ADCY10 acts as a key downstream target and diversifies the effects of glutamate on the PKA-dependent suppression of GFPT1. We also discovered that the protumorigenic and proferroptotic effects of ADCY10 are mediated separately. Advanced-stage LUADs with high ADCY10 expression are sensitive to ferroptosis. Moreover, LUAD cells with acquired therapy resistance are also prone to higher ADCY10 expression and are more likely to respond to ferroptosis. Finally, a varying degree of secondary labile iron increase is caused by the failure to sustain YAP-stimulated transcriptional compensation for ferritin at later stages further explains why ferroptosis sensitivity varies among LUAD cells. Conclusions: Endogenous glutamate is critical for ferroptosis sensitivity following the inhibition of system XC- in LUAD cells, and ferroptosis-based treatment is a good choice for LUAD patients with later-stage and/or therapy-resistant tumors.


Assuntos
Adenocarcinoma de Pulmão/metabolismo , Adenilil Ciclases/metabolismo , Proteínas de Ciclo Celular/metabolismo , Ferroptose/fisiologia , Ácido Glutâmico/metabolismo , Neoplasias Pulmonares/metabolismo , Fatores de Transcrição/metabolismo , Células A549 , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/fisiologia , Resistencia a Medicamentos Antineoplásicos/fisiologia , Feminino , Ferritinas/metabolismo , Glutamina-Frutose-6-Fosfato Transaminase (Isomerizante)/metabolismo , Humanos , Ferro/metabolismo , Masculino , Camundongos , Camundongos Nus , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/fisiologia
14.
Free Radic Biol Med ; 168: 25-43, 2021 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-33785413

RESUMO

The m6A reader YT521-B homology containing 2 (YTHDC2) has been identified to inhibit lung adenocarcinoma (LUAD) tumorigenesis by suppressing solute carrier 7A11 (SLC7A11)-dependent antioxidant function. SLC7A11 is a major functional subunit of system XC-. Inhibition of system XC- can induce ferroptosis. However, whether suppressing SLC7A11 is sufficient for YTHDC2 to be an endogenous ferroptosis inducer in LUAD is unknown. Here, we found that induction of YTHDC2 to a high level can induce ferroptosis in LUAD cells but not in lung and bronchus epithelial cells. In addition to SLC7A11, solute carrier 3A2 (SLC3A2), another subunit of system XC- was equally important for YTHDC2-induced ferroptosis. YTHDC2 m6A-dependently destabilized Homeo box A13 (HOXA13) mRNA because a potential m6A recognition site was identified within its 3' untranslated region (3'UTR). Interestingly, HOXA13 acted as a transcription factor to stimulate SLC3A2 expression. Thereby, YTHDC2 suppressed SLC3A2 via inhibiting HOXA13 in an m6A-indirect manner. Mouse experiments further confirmed the associations among YTHDC2, SLC3A2 and HOXA13, and demonstrated that SLC3A2 and SLC7A11 were both important for YTHDC2-impaired tumor growth and -induced lipid peroxidation in vivo. Moreover, higher expression of SLC7A11, SLC3A2 and HOXA13 indicate poorer clinical outcome in YTHDC2-suppressed LUAD patients. In conclusion, YTHDC2 is believed to be a powerful endogenous ferroptosis inducer and targeting SLC3A2 subunit of system XC- is essential for this process. Increasing YTHDC2 is an alternative ferroptosis-based therapy to treat LUAD.


Assuntos
Adenocarcinoma de Pulmão , Ferroptose , Neoplasias Pulmonares , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/genética , Sistema y+ de Transporte de Aminoácidos/genética , Animais , Carcinogênese , Cadeia Pesada da Proteína-1 Reguladora de Fusão , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Camundongos , RNA Helicases
15.
Redox Biol ; 38: 101801, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33232910

RESUMO

The biological functions of N6-methyladenosine (m6A) RNA methylation are mainly dependent on the reader; however, its role in lung tumorigenesis remains unclear. Here, we have demonstrated that the m6A reader YT521-B homology domain containing 2 (YTHDC2) is frequently suppressed in lung adenocarcinoma (LUAD). Downregulation of YTHDC2 was associated with poor clinical outcome of LUAD. YTHDC2 decreased tumorigenesis in a spontaneous LUAD mouse model. Moreover, YTHDC2 exhibited antitumor activity in human LUAD cells. Mechanistically, YTHDC2, via its m6A-recognizing YTH domain, suppressed cystine uptake and blocked the downstream antioxidant program. Administration of cystine downstream antioxidants to pulmonary YTHDC2-overexpressing mice rescued lung tumorigenesis. Furthermore, solute carrier 7A11 (SLC7A11), the catalytic subunit of system XC-, was identified to be the direct target of YTHDC2. YTHDC2 destabilized SLC7A11 mRNA in an m6A-dependent manner because YTHDC2 preferentially bound to m6A-modified SLC7A11 mRNA and thereafter promoted its decay. Clinically, a large proportion of acinar LUAD subtype cases exhibited simultaneous YTHDC2 downregulation and SLC7A11 elevation. Patient-derived xenograft (PDX) mouse models generated from acinar LUAD showed sensitivity to system XC- inhibitors. Collectively, the promotion of cystine uptake via the suppression of YTHDC2 is critical for LUAD tumorigenesis, and blocking this process may benefit future treatment.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/genética , Animais , Antioxidantes , Carcinogênese/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Camundongos , RNA Helicases
16.
Exp Anim ; 69(1): 45-53, 2020 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-31391379

RESUMO

Ip3r1 encodes an inositol 1,4,5-trisphosphate-responsive calcium channel. Mutations in the IP3R1 gene in humans may cause Gillespie syndrome (GS) typically presents as fixed dilated pupils in affected infants, which was referred to as iris hypoplasia. However, there is no report of mice with Ip3r1 heterozygous mutations showing dilated pupils. Here, we report a new Ip3r1 allele with short-term dilated pupil phenotype derived from an N-ethyl-N-nitrosourea (ENU) mutagenesis screen. This allele carries a G5927A transition mutation in Ip3r1 gene (NM_010585), which is predicted to result in a C1976Y amino acid change in the open reading frame of IP3R1 (NP_034715). We named this novel Ip3r1 allele Ip3r1C1976Y. Histology and pharmacological tests show that the dilated pupil phenotype is a mydriasis caused by the functional defect in the iris constrictor muscles in Ip3r1C1976Y. The dilated pupil phenotype in Ip3r1C1976Y was referred to as mydriasis and excluding iris hypoplasia. IHC analysis revealed increased expression of BIP protein, the master regulator of unfolded protein response (UPR) signaling, in Ip3r1C1976Y mice that did not recover. This study is the first report of an Ip3r1 mutation being associated with the mydriasis phenotype. Ip3r1C1976Y mice represent a self-healing model that may be used to study the therapeutic approach for Ip3r1-related diseases.


Assuntos
Receptores de Inositol 1,4,5-Trifosfato/genética , Iris/fisiopatologia , Mutação de Sentido Incorreto , Midríase/genética , Músculos Oculomotores/fisiologia , Resposta a Proteínas não Dobradas/genética , Animais , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...